EE 421: Communications I

Dr. Mohammed Hawa

Assignment 1: DSB-SC Modulation and Demodulation Do **NOT** submit this assignment. It will be included in the Test material.

Q1. Using MATLAB, create a time axis between [0, 0.1] seconds with a sampling interval of $\Delta t = 1 \times 10^{-5}$ seconds, as follows: t = 0 : 1/1e5 : 0.1; Now sketch the following signals in time domain:

Modulating signal (low-frequency sinusoidal): m t = cos(2*pi*25*t);

Carrier signal (high-frequency sinusoidal): c t = cos(2*pi*210*t);

DSB-SC Modulated signal: phi_t = m_t .* c_t;

Q2. Identify the 180 degrees phase shifts in the modulated signals. Why do we get such phase shifts?

Q3. Now change the message signal to $m_t = \text{sawtooth}(2*\text{pi}*25*\text{t})$, or a repeated half-triangular pulse train: d = 0 : 1/50 : 0.1; $m_t = \text{pulstran}(t,d,'\text{tripuls}',0.01,-1) - 0.5$;. Plot the modulating, carrier and modulated signals again. Did you notice the abrupt changes in phase?

Q4. Using MATLAB, sketch the following signals in time domain in the interval [0, 0.1] seconds:

DSB-SC Modulated signal: phi_t = m_t .* c_t;

After multiplication at the receiver: $x_t = phi_t .* c_t;$

Recovered signal: The above signal x(t) passed through a LPF. This can be done in MATLAB as follows¹:

$$y_t = filtfilt([1 2 1],[1 -1.99688998444418 0.996894813039884], ... x_t)*1.20714892591976e-12;$$

For the above digital filter to work correctly, you need to make sure you use a sampling frequency of 100 kHz. In other words, successive samples of your signals should be 1×10^{-5} seconds apart.

Q5. What does the recovered signal look like?

¹ The filter used here is a second-order digital LPF with cutoff frequency = 30 Hz.